
1

Statistics 202: Statistical Aspects of Data Mining

Professor David Mease

Tuesday, Thursday 9:00-10:15 AM Terman 156

Lecture 13 = Finish Chapter 5 and Chapter 8

Agenda:
1) Reminder about 5th Homework

(due Tues 8/14 at 9AM)
2) Discuss Final Exam
3) Lecture over rest of Chapter 5 (Section 5.6)
4) Lecture over Chapter 8 (Sections 8.1 and 8.2)

2

Homework Assignment:
Chapter 5 Homework Part 2 and Chapter 8 Homework is
due Tuesday 8/14 at 9AM.

Either email to me (dmease@stanford.edu), bring it to
class, or put it under my office door.

SCPD students may use email or fax or mail.

The assignment is posted at

http://www.stats202.com/homework.html

Important: If using email, please submit only a single
file (word or pdf) with your name and chapters in the file
name. Also, include your name on the first page.
Finally, please put your name and the homework #
in the subject of the email.

3

Final Exam
I have obtained permission to have the final exam from
9 AM to 12 noon on Thursday 8/16 in the classroom
(Terman 156)

I will assume the same people will take it off campus as
with the midterm so please let me know if

1) You are SCPD and took the midterm on campus
but need to take the final off campus

or

2) You are SCPD and took the midterm off campus
but want to take the final on campus

More details to come...

4

Introduction to Data Mining

by
Tan, Steinbach, Kumar

Chapter 5: Classification: Alternative
Techniques

5

Ensemble Methods (Section 5.6, page 276)

Ensemble methods aim at “improving classification
accuracy by aggregating the predictions from multiple
classifiers” (page 276)

One of the most obvious ways of doing this is simply
by averaging classifiers which make errors somewhat
independently of each other

6

In class exercise #45:
Suppose I have 5 classifiers which each classify a point
correctly 70% of the time. If these 5 classifiers are
completely independent and I take the majority vote,
how often is the majority vote correct for that point?

7

In class exercise #45:
Suppose I have 5 classifiers which each classify a point
correctly 70% of the time. If these 5 classifiers are
completely independent and I take the majority vote,
how often is the majority vote correct for that point?

Solution (continued):

10*.7^3*.3^2 + 5*.7^4*.3^1 + .7^5

or

1-pbinom(2, 5, .7)

8

In class exercise #46:
Suppose I have 101 classifiers which each classify a
point correctly 70% of the time. If these 101 classifiers
are completely independent and I take the majority
vote, how often is the majority vote correct for that
point?

9

In class exercise #46:
Suppose I have 101 classifiers which each classify a
point correctly 70% of the time. If these 101 classifiers
are completely independent and I take the majority
vote, how often is the majority vote correct for that
point?

Solution (continued):

1-pbinom(50, 101, .7)

10

Ensemble Methods (Section 5.6, page 276)

Ensemble methods include
-Bagging (page 283)
-Random Forests (page 290)
-Boosting (page 285)

Bagging builds different classifiers by training on
repeated samples (with replacement) from the data

Random Forests averages many trees which are
constructed with some amount of randomness

Boosting combines simple base classifiers by
upweighting data points which are classified incorrectly

11

Random Forests (Section 5.6.6, page 290)

One way to create random forests is to grow decision
trees top down but at each terminal node consider only
a random subset of attributes for splitting instead of all
the attributes

Random Forests are a very effective technique

They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

They can be fit in R using the function randomForest()
in the library randomForest

12

In class exercise #47:
Use randomForest() in R to fit the default Random
Forest to the last column of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error for the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

13

In class exercise #47:
Use randomForest() in R to fit the default Random
Forest to the last column of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error for the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit<-randomForest(x,y)
1-sum(y_test==predict(fit,x_test))/length(y_test)

14

Boosting (Section 5.6.5, page 285)

Boosting has been called the “best off-the-shelf
classifier in the world”

There are a number of explanations for boosting, but it
is not completely understood why it works so well

The most popular algorithm is AdaBoost from

15

Boosting (Section 5.6.5, page 285)

Boosting can use any classifier as its weak learner
(base classifier) but decision trees are by far the most
popular

Boosting usually gives zero training error, but rarely
overfits which is very curious

16

Boosting (Section 5.6.5, page 285)

Boosting works by upweighing points at each iteration
which are misclassified

On paper, boosting looks like an optimization (similar
to maximum likelihood estimation), but in practice it
seems to benefit a lot from averaging like Random
Forests does

There exist R libraries for boosting, but these are
written by statisticians who have their own views of
boosting, so I would not encourage you to use them

The best thing to do is to write code yourself
since the algorithms are very basic

17

AdaBoost

Here is a version of the AdaBoost algorithm

The algorithm repeats until a chosen stopping time

The final classifier is based on the sign of Fm

18

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution:

train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-train[,61]
x<-train[,1:60]
y_test<-test[,61]
x_test<-test[,1:60]

19

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):
train_error<-rep(0,500)
test_error<-rep(0,500)
f<-rep(0,130)
f_test<-rep(0,78)
i<-1
library(rpart)

20

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):
while(i<=500){
w<-exp(-y*f)
w<-w/sum(w)
fit<-rpart(y~.,x,w,method="class")
g<--1+2*(predict(fit,x)[,2]>.5)
g_test<--1+2*(predict(fit,x_test)[,2]>.5)
e<-sum(w*(y*g<0))

21

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):
alpha<-.5*log ((1-e) / e)
f<-f+alpha*g
f_test<-f_test+alpha*g_test
train_error[i]<-sum(1*f*y<0)/130
test_error[i]<-sum(1*f_test*y_test<0)/78
i<-i+1

}

22

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):
plot(seq(1,500),test_error,type="l",

ylim=c(0,.5),
ylab="Error Rate",xlab="Iterations",lwd=2)

lines(train_error,lwd=2,col="purple")
legend(4,.5,c("Training Error","Test Error"),

col=c("purple","black"),lwd=2)

23

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Iterations

E
rro

r R
at

e
Training Error
Test Error

24

Introduction to Data Mining

by
Tan, Steinbach, Kumar

Chapter 8: Cluster Analysis

25

What is Cluster Analysis?

“Cluster analysis divides data into groups (clusters)
that are meaningful, useful, or both” (page 487)

It is similar to classification, only now we don’t know
the “answer” (we don’t have the labels)

For this reason, clustering is often called
unsupervised learning while classification is often called
supervised learning (page 491 – but the book says
“classification” instead of “learning”)

Note that there also exists semi-supervised learning
which is a combination of both and is a hot
research area right now

26

What is Cluster Analysis?

Because there is no right answer, your book
characterizes clustering as an exercise in descriptive
statistics rather than prediction

“Cluster analysis groups data objects based only on
information found in the data that describes the objects
and their similarities” (page 490)

“The goal is that objects within a group be similar (or
related) to one another and different from (or unrelated
to) the objects in other groups” (page 490)

27

Examples of Clustering (P. 488)

Biology: kingdom, phylum, class, order, family, genus,
and species

Information Retrieval: search engine query = movie,
clusters = reviews, trailers, stars, theaters

Climate: Clusters = regions of similar climate

Psychology and Medicine: patterns in spatial or
temporal distribution of a disease

Business: Segment customers into groups for
marketing activities

28

Two Reasons for Clustering (P. 488)

Clustering for Understanding
(see examples from previous slide)

Clustering for Utility

-Summarizing: different algorithms can run faster on
a data set summarized by clustering

-Compression: storing cluster information is more
efficient that storing the entire data -
example: quantization

-Finding Nearest Neighbors

29

How Many Clusters is Tricky/Subjective

How many clusters?

30

How Many Clusters is Tricky/Subjective

How many clusters?

Two Clusters

31

How Many Clusters is Tricky/Subjective

How many clusters?

Four ClustersTwo Clusters

32

How Many Clusters is Tricky/Subjective

How many clusters?

Four ClustersTwo Clusters

Six Clusters

33

K-Means Clustering

K-means clustering is one of the most
common/popular techniques

Each cluster is associated with a centroid (center
point) – this is often the mean – it is the cluster
prototype

Each point is assigned to the cluster with the closest
centroid

The number of clusters, K, must be specified ahead of
time

34

K-Means Clustering

The most common version of k-means minimizes the
sum of the squared distances of each point from its
cluster center (page 500)

For a given set of cluster centers, (obviously) each
point should be matched to the nearest center

For a given cluster, the best center is the mean

The basic algorithm is to iterate over these two
relationships

∑∑
= ∈

=
K

i Cx
i

i

xcdistSSE
1

2),(

35

K-Means Clustering Algorithms

This is Algorithm 8.1 on page 497 of your text

Other algorithms also exist

In R, the function kmeans() does k means clustering –
no special package or library is needed

36

In class exercise #49:
Use kmeans() in R with all the default values to find the
k=2 solution for the 2-dimensional data at
http://www-stat.wharton.upenn.edu/~dmease/cluster.csv
Plot the data. Also plot the fitted cluster centers using
a different color. Finally, use the knn() function to
assign the cluster membership for the points to the
nearest cluster center. Color the points according to
their cluster membership.

37

In class exercise #49:
Use kmeans() in R with all the default values to find the
k=2 solution for the 2-dimensional data at
http://www-stat.wharton.upenn.edu/~dmease/cluster.csv
Plot the data. Also plot the fitted cluster centers using
a different color. Finally, use the knn() function to
assign the cluster membership for the points to the
nearest cluster center. Color the points according to
their cluster membership.

Solution (continued):
x<-read.csv("cluster.csv",header=F)

plot(x,pch=19,xlab=expression(x[1]),
ylab=expression(x[2]))

fit<-kmeans(x, 2)

points(fit$centers,pch=19,col="blue",cex=2)

38

In class exercise #49:
Use kmeans() in R with all the default values to find the
k=2 solution for the 2-dimensional data at
http://www-stat.wharton.upenn.edu/~dmease/cluster.csv
Plot the data. Also plot the fitted cluster centers using
a different color. Finally, use the knn() function to
assign the cluster membership for the points to the
nearest cluster center. Color the points according to
their cluster membership.

Solution (continued):
library(class)

knnfit<-knn(fit$centers,x,as.factor(c(-1,1)))

points(x,col=1+1*as.numeric(knnfit),pch=19)

