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Statistics 202: Statistical Aspects of Data Mining

Professor David Mease

Tuesday, Thursday 9:00-10:15 AM Terman 156

Lecture 13 =  Finish Chapter 5 and Chapter 8

Agenda:
1) Reminder about 5th Homework 

(due Tues 8/14 at 9AM)
2) Discuss Final Exam
3) Lecture over rest of Chapter 5 (Section 5.6)
4) Lecture over Chapter 8 (Sections 8.1 and 8.2)
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Homework Assignment:
Chapter 5 Homework Part 2 and Chapter 8 Homework is 
due Tuesday 8/14 at 9AM.

Either email to me (dmease@stanford.edu), bring it to 
class, or put it under my office door.  

SCPD students may use email or fax or mail.

The assignment is posted at 

http://www.stats202.com/homework.html

Important: If using email, please submit only a single 
file (word or pdf) with your name and chapters in the file 
name.  Also, include your name on the first page.  
Finally, please put your name and the homework #           
in the subject of the email.
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Final Exam
I have obtained permission to have the final exam from 
9 AM to 12 noon on Thursday 8/16 in the classroom 
(Terman 156)

I will assume the same people will take it off campus as 
with the midterm so please let me know if

1) You are SCPD and took the midterm on campus 
but need to take the final off campus

or

2) You are SCPD and took the midterm off campus 
but want to take the final on campus

More details to come...
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Introduction to Data Mining

by
Tan, Steinbach, Kumar

Chapter 5: Classification: Alternative 
Techniques
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Ensemble Methods (Section 5.6, page 276)   

Ensemble methods aim at “improving classification 
accuracy by aggregating the predictions from multiple 
classifiers” (page 276)

One of the most obvious ways of doing this is simply 
by averaging classifiers which make errors somewhat 
independently of each other
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In class exercise #45:
Suppose I have 5 classifiers which each classify a point 
correctly 70% of the time.  If these 5 classifiers are 
completely independent and I take the majority vote, 
how often is the majority vote correct for that point?  
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In class exercise #45:
Suppose I have 5 classifiers which each classify a point 
correctly 70% of the time.  If these 5 classifiers are 
completely independent and I take the majority vote, 
how often is the majority vote correct for that point?  

Solution (continued):

10*.7^3*.3^2 + 5*.7^4*.3^1 + .7^5

or

1-pbinom(2, 5, .7)
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In class exercise #46:
Suppose I have 101 classifiers which each classify a 
point correctly 70% of the time.  If these 101 classifiers 
are completely independent and I take the majority 
vote, how often is the majority vote correct for that 
point?  
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In class exercise #46:
Suppose I have 101 classifiers which each classify a 
point correctly 70% of the time.  If these 101 classifiers 
are completely independent and I take the majority 
vote, how often is the majority vote correct for that 
point?  

Solution (continued):

1-pbinom(50, 101, .7)
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Ensemble Methods (Section 5.6, page 276)   

Ensemble methods include
-Bagging (page 283)
-Random Forests (page 290)
-Boosting (page 285)

Bagging builds different classifiers by training on 
repeated samples (with replacement) from the data

Random Forests averages many trees which are 
constructed with some amount of randomness

Boosting combines simple base classifiers by 
upweighting data points which are classified incorrectly
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Random Forests (Section 5.6.6, page 290)   

One way to create random forests is to grow decision 
trees top down but at each terminal node consider only 
a random subset of attributes for splitting instead of all 
the attributes

Random Forests are a very effective technique

They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

They can be fit in R using the function randomForest() 
in the library randomForest
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In class exercise #47:
Use randomForest() in R to fit the default Random 
Forest to the last column of the sonar training data at  
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error for the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
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In class exercise #47:
Use randomForest() in R to fit the default Random 
Forest to the last column of the sonar training data at  
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error for the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit<-randomForest(x,y)
1-sum(y_test==predict(fit,x_test))/length(y_test)
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Boosting (Section 5.6.5, page 285)   

Boosting has been called the “best off-the-shelf 
classifier in the world”

There are a number of explanations for boosting, but it 
is not completely understood why it works so well

The most popular algorithm is AdaBoost from



15

Boosting (Section 5.6.5, page 285)   

Boosting can use any classifier as its weak learner 
(base classifier) but decision trees are by far the most 
popular

Boosting usually gives zero training error, but rarely 
overfits which is very curious
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Boosting (Section 5.6.5, page 285)   

Boosting works by upweighing points at each iteration 
which are misclassified

On paper, boosting looks like an optimization (similar 
to maximum likelihood estimation), but in practice it 
seems to benefit a lot from averaging like Random 
Forests does

There exist R libraries for boosting, but these are 
written by statisticians who have their own views of 
boosting, so I would not encourage you to use them

The best thing to do is to write code yourself            
since the algorithms are very basic
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AdaBoost

Here is a version of the AdaBoost algorithm

The algorithm repeats until a chosen stopping time

The final classifier is based on the sign of Fm
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In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of 
the sonar training data at  
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and 
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations.  Run the algorithm for 
500 iterations.  Use default rpart() as the base learner.

Solution:

train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-train[,61]
x<-train[,1:60]
y_test<-test[,61]
x_test<-test[,1:60]
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In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of 
the sonar training data at  
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and 
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations.  Run the algorithm for 
500 iterations.  Use default rpart() as the base learner.

Solution (continued):
train_error<-rep(0,500)
test_error<-rep(0,500)
f<-rep(0,130)
f_test<-rep(0,78)
i<-1
library(rpart)
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In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of 
the sonar training data at  
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and 
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations.  Run the algorithm for 
500 iterations.  Use default rpart() as the base learner.

Solution (continued):
while(i<=500){
w<-exp(-y*f)
w<-w/sum(w)
fit<-rpart(y~.,x,w,method="class")
g<--1+2*(predict(fit,x)[,2]>.5)
g_test<--1+2*(predict(fit,x_test)[,2]>.5)
e<-sum(w*(y*g<0))
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In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of 
the sonar training data at  
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and 
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations.  Run the algorithm for 
500 iterations.  Use default rpart() as the base learner.

Solution (continued):
alpha<-.5*log ( (1-e) / e )
f<-f+alpha*g
f_test<-f_test+alpha*g_test
train_error[i]<-sum(1*f*y<0)/130
test_error[i]<-sum(1*f_test*y_test<0)/78
i<-i+1

}



22

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of 
the sonar training data at  
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and 
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations.  Run the algorithm for 
500 iterations.  Use default rpart() as the base learner.

Solution (continued):
plot(seq(1,500),test_error,type="l",

ylim=c(0,.5),
ylab="Error Rate",xlab="Iterations",lwd=2)

lines(train_error,lwd=2,col="purple")
legend(4,.5,c("Training Error","Test Error"),   

col=c("purple","black"),lwd=2)
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In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of 
the sonar training data at  
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and 
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations.  Run the algorithm for 
500 iterations.  Use default rpart() as the base learner.

Solution (continued):
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Introduction to Data Mining

by
Tan, Steinbach, Kumar

Chapter 8: Cluster Analysis
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What is Cluster Analysis?   

“Cluster analysis divides data into groups (clusters) 
that are meaningful, useful, or both” (page 487)

It is similar to classification, only now we don’t know 
the “answer” (we don’t have the labels)

For this reason, clustering is often called 
unsupervised learning while classification is often called 
supervised learning (page 491 – but the book says 
“classification” instead of “learning”)

Note that there also exists semi-supervised learning
which is a combination of both and is a hot         
research area right now
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What is Cluster Analysis?   

Because there is no right answer, your book 
characterizes clustering as an exercise in descriptive 
statistics rather than prediction

“Cluster analysis groups data objects based only on 
information found in the data that describes the objects 
and their similarities” (page 490)

“The goal is that objects within a group be similar (or 
related) to one another and different from (or unrelated 
to) the objects in other groups” (page 490)
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Examples of Clustering (P. 488)   

Biology: kingdom, phylum, class, order, family, genus, 
and species

Information Retrieval: search engine query = movie, 
clusters = reviews, trailers, stars, theaters

Climate: Clusters = regions of similar climate

Psychology and Medicine: patterns in spatial or 
temporal distribution of a disease

Business: Segment customers into groups for 
marketing activities
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Two Reasons for Clustering (P. 488)   

Clustering for Understanding
(see examples from previous slide)

Clustering for Utility

-Summarizing: different algorithms can run faster on 
a data set summarized by clustering

-Compression: storing cluster information is more 
efficient that storing the entire data -
example: quantization

-Finding Nearest Neighbors



29

How Many Clusters is Tricky/Subjective   

How many clusters?
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How Many Clusters is Tricky/Subjective   

How many clusters?

Two Clusters
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How Many Clusters is Tricky/Subjective   

How many clusters?

Four ClustersTwo Clusters
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How Many Clusters is Tricky/Subjective   

How many clusters?

Four ClustersTwo Clusters

Six Clusters
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K-Means Clustering 

K-means clustering is one of the most 
common/popular techniques

Each cluster is associated with a centroid (center 
point) – this is often the mean – it is the cluster 
prototype

Each point is assigned to the cluster with the closest 
centroid

The number of clusters, K, must be specified ahead of 
time
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K-Means Clustering 

The most common version of k-means minimizes the 
sum of the squared distances of each point from its 
cluster center (page 500)

For a given set of cluster centers, (obviously) each 
point should be matched to the nearest center

For a given cluster, the best center is the mean

The basic algorithm is to iterate over these two               
relationships
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K-Means Clustering Algorithms

This is Algorithm 8.1 on page 497 of your text

Other algorithms also exist

In R, the function kmeans() does k means clustering –
no special package or library is needed
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In class exercise #49:
Use kmeans() in R with all the default values to find the 
k=2 solution for the 2-dimensional data at
http://www-stat.wharton.upenn.edu/~dmease/cluster.csv
Plot the data.  Also plot the fitted cluster centers using 
a different color.  Finally, use the knn() function to 
assign the cluster membership for the points to the 
nearest cluster center.  Color the points according to 
their cluster membership.
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In class exercise #49:
Use kmeans() in R with all the default values to find the 
k=2 solution for the 2-dimensional data at
http://www-stat.wharton.upenn.edu/~dmease/cluster.csv
Plot the data.  Also plot the fitted cluster centers using 
a different color.  Finally, use the knn() function to 
assign the cluster membership for the points to the 
nearest cluster center.  Color the points according to 
their cluster membership.

Solution (continued):
x<-read.csv("cluster.csv",header=F)

plot(x,pch=19,xlab=expression(x[1]),
ylab=expression(x[2]))

fit<-kmeans(x, 2)

points(fit$centers,pch=19,col="blue",cex=2)
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In class exercise #49:
Use kmeans() in R with all the default values to find the 
k=2 solution for the 2-dimensional data at
http://www-stat.wharton.upenn.edu/~dmease/cluster.csv
Plot the data.  Also plot the fitted cluster centers using 
a different color.  Finally, use the knn() function to 
assign the cluster membership for the points to the 
nearest cluster center.  Color the points according to 
their cluster membership.

Solution (continued):
library(class)

knnfit<-knn(fit$centers,x,as.factor(c(-1,1)))

points(x,col=1+1*as.numeric(knnfit),pch=19)


