
1

Statistics 202: Statistical Aspects of Data Mining

Professor David Mease

Tuesday, Thursday 9:00-10:15 AM Terman 156

Lecture 12 = More of Chapter 5

Agenda:
1) Assign 5th Homework (due Tues 8/14 at 9AM)
2) Discuss Final Exam
3) Lecture over more of Chapter 5

2

Homework Assignment:
Chapter 5 Homework Part 2 and Chapter 8 Homework is
due Tuesday 8/14 at 9AM.

Either email to me (dmease@stanford.edu), bring it to
class, or put it under my office door.

SCPD students may use email or fax or mail.

The assignment is posted at

http://www.stats202.com/homework.html

Important: If using email, please submit only a single
file (word or pdf) with your name and chapters in the file
name. Also, include your name on the first page.
Finally, please put your name and the homework #
in the subject of the email.

3

Final Exam
I have obtained permission to have the final exam from
9 AM to 12 noon on Thursday 8/16 in the classroom
(Terman 156)

I will assume the same people will take it off campus as
with the midterm so please let me know if

1) You are SCPD and took the midterm on campus
but need to take the final off campus

or

2) You are SCPD and took the midterm off campus
but want to take the final on campus

More details to come...

4

Introduction to Data Mining

by
Tan, Steinbach, Kumar

Chapter 5: Classification: Alternative
Techniques

5

The ROC Curve (Sec 5.7.2, p. 298)

ROC stands for Receiver Operating Characteristic

Since we can “turn up” or “turn down” the number of
observations being classified as the positive class, we
can have many different values of true positive rate
(TPR) and false positive rate (FPR) for the same
classifier.

TPR= FPR=

The ROC curve plots TPR on the y-axis and FPR on
the x-axis

FNTP
TP
+ TNFP

FP
+

6

The ROC Curve (Sec 5.7.2, p. 298)

The ROC curve plots TPR on the y-axis and FPR on
the x-axis

The diagonal represents random guessing

A good classifier lies near the upper left

ROC curves are useful for comparing 2 classifiers

The better classifier will lie on top more often

The Area Under the Curve (AUC) is often used a metric

7

In class exercise #40:
This is textbook question #17 part (a) on page 322. It
is part of your homework so we will not do all of it in
class. We will just do the curve for M1.

8

In class exercise #41:
This is textbook question #17 part (b) on page 322.

9

Additional Classification Techniques

Decision trees are just one method for classification

We will learn additional methods in this chapter:

- Nearest Neighbor
- Support Vector Machines
- Bagging
- Random Forests
- Boosting

10

Nearest Neighbor (Section 5.2, page 223)

You can use nearest neighbor classifiers if you have
some way of defining “distances” between attributes

The k-nearest neighbor classifier classifies a point
based on the majority of the k closest training points

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

11

Nearest Neighbor (Section 5.2, page 223)

Here is a plot I made using R showing the 1-nearest
neighbor classifier on a 2-dimensional data set.

12

Nearest Neighbor (Section 5.2, page 223)

Nearest neighbor methods work very poorly when the
dimensionality is large (meaning there are a large
number of attributes)

The scales of the different attributes are important. If
a single numeric attribute has a large spread, it can
dominate the distance metric. A common practice is to
scale all numeric attributes to have equal variance.

The knn() function in R in the library “class” does a k-
nearest neighbor classification using Euclidean
distance.

13

In class exercise #42:
Use knn() in R to fit the 1-nearest-nieghbor classifier to
the last column of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Use all the default values. Compute the
misclassification error on the training data and also on
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

14

In class exercise #42:
Use knn() in R to fit the 1-nearest-nieghbor classifier to
the last column of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Use all the default values. Compute the
misclassification error on the training data and also on
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

Solution:

install.packages("class")
library(class)
train<-read.csv("sonar_train.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
fit<-knn(x,x,y)
1-sum(y==fit)/length(y)

15

In class exercise #42:
Use knn() in R to fit the 1-nearest-nieghbor classifier to
the last column of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Use all the default values. Compute the
misclassification error on the training data and also on
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

Solution (continued):

test<-read.csv("sonar_test.csv",header=FALSE)
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit_test<-knn(x,x_test,y)
1-sum(y_test==fit_test)/length(y_test)

16

Support Vector Machines (Section 5.5, page 256)

If the two classes can be separated perfectly by a line
in the x space, how do we choose the “best” line?

17

Support Vector Machines (Section 5.5, page 256)

If the two classes can be separated perfectly by a line
in the x space, how do we choose the “best” line?

18

Support Vector Machines (Section 5.5, page 256)

If the two classes can be separated perfectly by a line
in the x space, how do we choose the “best” line?

19

Support Vector Machines (Section 5.5, page 256)

If the two classes can be separated perfectly by a line
in the x space, how do we choose the “best” line?

20

Support Vector Machines (Section 5.5, page 256)

If the two classes can be separated perfectly by a line
in the x space, how do we choose the “best” line?

21

Support Vector Machines (Section 5.5, page 256)

One solution is to choose the line (hyperplane) with
the largest margin. The margin is the distance between
the two parallel lines on either side.

B1

B2

b11

b12

b21
b22

margin

22

Support Vector Machines (Section 5.5, page 256)

Here is the notation your book uses:

0=+• bxw rr

1−=+• bxw rr 1+=+• bxw rr

⎩
⎨
⎧

−≤+•−
≥+•

=
1bxw if1

1bxw if1
)(rr

rr
rxf

23

Support Vector Machines (Section 5.5, page 256)

This can be formulated as a constrained optimization
problem.

We want to maximize

This is equivalent to minimizing

We have the following constraints

So we have a quadratic objective function with linear
constraints which means it is a convex optimization
problem and we can use Lagrange multipliers

2
||||)(

2wwL
r

=

⎩
⎨
⎧

−≤+•−
≥+•

=
1bxw if1

1bxw if1
)(

i

i
rr

rr
r

ixf

24

Support Vector Machines (Section 5.5, page 256)

What if the problem is not linearly separable?

Then we can introduce slack variables:

Minimize

Subject to

⎟
⎠

⎞
⎜
⎝

⎛+= ∑
=

N

i

k
iCwwL

1

2

2
||||)(ξ

r

⎩
⎨
⎧

+−≤+•−
≥+•

=
ii

ii

1bxw if1
-1bxw if1

)(
ξ

ξ
rr

rr
r

ixf

25

Support Vector Machines (Section 5.5, page 256)

What if the boundary is not linear?

Then we can use transformations of the variables to
map into a higher dimensional space

26

Support Vector Machines in R
The function svm in the package e1071 can fit support

vector machines in R

Note that the default kernel is not linear – use
kernel=“linear” to get a linear kernel

27

In class exercise #43:
Use svm() in R to fit the default svm to the last column
of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error on the training
data and also on the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

28

In class exercise #43:
Use svm() in R to fit the default svm to the last column
of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error on the training
data and also on the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

Solution:

install.packages("e1071")
library(e1071)
train<-read.csv("sonar_train.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
fit<-svm(x,y)
1-sum(y==predict(fit,x))/length(y)

29

In class exercise #43:
Use svm() in R to fit the default svm to the last column
of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error on the training
data and also on the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

Solution (continued):

test<-read.csv("sonar_test.csv",header=FALSE)
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
1-sum(y_test==predict(fit,x_test))/length(y_test)

30

In class exercise #44:
Use svm() in R with kernel="linear“ and cost=100000
to fit the toy 2-dimensional data below. Provide a plot
of the resulting classification rule.

0 0.1 -1
0.8 0.9 -1
0.4 0.5 -1
0.3 0.7 -1
0.1 0.4 -1
0.7 0.3 1
0.5 0.2 1
0.8 0.6 1
0.8 0 1
0.8 0.3 1

x1 x2 y

31

In class exercise #44:
Use svm() in R with kernel="linear“ and cost=100000
to fit the toy 2-dimensional data below. Provide a plot
of the resulting classification rule.

Solution:

x<-matrix(c(0,.1,.8,.9,.4,.5,
.3,.7,.1,.4,.7,.3,.5,.2,.8,.6,.8,0,.8,.3),
ncol=2,byrow=T)

y<-as.factor(c(rep(-1,5),rep(1,5)))

plot(x,pch=19,xlim=c(0,1),ylim=c(0,1),
col=2*as.numeric(y),cex=2,
xlab=expression(x[1]),ylab=expression(x[2]))

0 0.1 -1
0.8 0.9 -1
0.4 0.5 -1
0.3 0.7 -1
0.1 0.4 -1
0.7 0.3 1
0.5 0.2 1
0.8 0.6 1
0.8 0 1
0.8 0.3 1

x1 x2 y

32

In class exercise #44:
Use svm() in R with kernel="linear“ and cost=100000
to fit the toy 2-dimensional data below. Provide a plot
of the resulting classification rule.

Solution (continued):

fit<-svm (x,y,kernel="linear",cost=100000)

big_x<-matrix(runif(200000),ncol=2,byrow=T)

points(big_x,col=rgb(.5,.5,
.2+.6*as.numeric(predict(fit,big_x)==1)),pch=19)

points(x,pch=19,col=2*as.numeric(y),cex=2)

0 0.1 -1
0.8 0.9 -1
0.4 0.5 -1
0.3 0.7 -1
0.1 0.4 -1
0.7 0.3 1
0.5 0.2 1
0.8 0.6 1
0.8 0 1
0.8 0.3 1

x1 x2 y

33

In class exercise #44:
Use svm() in R with kernel="linear“ and cost=100000
to fit the toy 2-dimensional data below. Provide a plot
of the resulting classification rule.

Solution (continued):

0 0.1 -1
0.8 0.9 -1
0.4 0.5 -1
0.3 0.7 -1
0.1 0.4 -1
0.7 0.3 1
0.5 0.2 1
0.8 0.6 1
0.8 0 1
0.8 0.3 1

x1 x2 y

34

Ensemble Methods (Section 5.6, page 276)

Ensemble methods aim at “improving classification
accuracy by aggregating the predictions from multiple
classifiers” (page 276)

One of the most obvious ways of doing this is simply
by averaging classifiers which make errors somewhat
independently of each other

35

In class exercise #45:
Suppose I have 5 classifiers which each classify a point
correctly 70% of the time. If these 5 classifiers are
completely independent and I take the majority vote,
how often is the majority vote correct for that point?

36

In class exercise #45:
Suppose I have 5 classifiers which each classify a point
correctly 70% of the time. If these 5 classifiers are
completely independent and I take the majority vote,
how often is the majority vote correct for that point?

Solution (continued):

10*.7^3*.3^2 + 5*.7^4*.3^1 + .7^5

or

1-pbinom(2, 5, .7)

37

In class exercise #46:
Suppose I have 101 classifiers which each classify a
point correctly 70% of the time. If these 101 classifiers
are completely independent and I take the majority
vote, how often is the majority vote correct for that
point?

38

In class exercise #46:
Suppose I have 101 classifiers which each classify a
point correctly 70% of the time. If these 101 classifiers
are completely independent and I take the majority
vote, how often is the majority vote correct for that
point?

Solution (continued):

1-pbinom(50, 101, .7)

39

Ensemble Methods (Section 5.6, page 276)

Ensemble methods include
-Bagging (page 283)
-Random Forests (page 290)
-Boosting (page 285)

Bagging builds different classifiers by training on
repeated samples (with replacement) from the data

Random Forests averages many trees which are
constructed with some amount of randomness

Boosting combines simple base classifiers by
upweighting data points which are classified incorrectly

40

Random Forests (Section 5.6.6, page 290)

One way to create random forests is to grow decision
trees top down but at each terminal node consider only
a random subset of attributes for splitting instead of all
the attributes

Random Forests are a very effective technique

They are based on the paper

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001

They can be fit in R using the function randomForest()
in the library randomForest

41

In class exercise #47:
Use randomForest() in R to fit the default Random
Forest to the last column of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error for the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

42

In class exercise #47:
Use randomForest() in R to fit the default Random
Forest to the last column of the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Compute the misclassification error for the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv

Solution:

install.packages("randomForest")
library(randomForest)
train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-as.factor(train[,61])
x<-train[,1:60]
y_test<-as.factor(test[,61])
x_test<-test[,1:60]
fit<-randomForest(x,y)
1-sum(y_test==predict(fit,x_test))/length(y_test)

43

Boosting (Section 5.6.5, page 285)

Boosting has been called the “best off-the-shelf
classifier in the world”

There are a number of explanations for boosting, but it
is not completely understood why it works so well

The most popular algorithm is AdaBoost from

44

Boosting (Section 5.6.5, page 285)

Boosting can use any classifier as its weak learner
(base classifier) but decision trees are by far the most
popular

Boosting usually gives zero training error, but rarely
overfits which is very curious

45

Boosting (Section 5.6.5, page 285)

Boosting works by upweighing points at each iteration
which are misclassified

On paper, boosting looks like an optimization (similar
to maximum likelihood estimation), but in practice it
seems to benefit a lot from averaging like Random
Forests does

There exist R libraries for boosting, but these are
written by statisticians who have their own views of
boosting, so I would not encourage you to use them

The best thing to do is to write code yourself
since the algorithms are very basic

46

AdaBoost

Here is a version of the AdaBoost algorithm

The algorithm repeats until a chosen stopping time

The final classifier is based on the sign of Fm

47

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution:

train<-read.csv("sonar_train.csv",header=FALSE)
test<-read.csv("sonar_test.csv",header=FALSE)
y<-train[,61]
x<-train[,1:60]
y_test<-test[,61]
x_test<-test[,1:60]

48

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):
train_error<-rep(0,500)
test_error<-rep(0,500)
f<-rep(0,130)
f_test<-rep(0,78)
i<-1
library(rpart)

49

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):
while(i<=500){
w<-exp(-y*f)
w<-w/sum(w)
fit<-rpart(y~.,x,w,method="class")
g<--1+2*(predict(fit,x)[,2]>.5)
g_test<--1+2*(predict(fit,x_test)[,2]>.5)
e<-sum(w*(y*g<0))

50

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):
alpha<-.5*log ((1-e) / e)
f<-f+alpha*g
f_test<-f_test+alpha*g_test
train_error[i]<-sum(1*f*y<0)/130
test_error[i]<-sum(1*f_test*y_test<0)/78
i<-i+1

}

51

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):
plot(seq(1,500),test_error,type="l",

ylim=c(0,.5),
ylab="Error Rate",xlab="Iterations",lwd=2)

lines(train_error,lwd=2,col="purple")
legend(4,.5,c("Training Error","Test Error"),

col=c("purple","black"),lwd=2)

52

In class exercise #48:
Use R to fit the AdaBoost classifier to the last column of
the sonar training data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_train.csv
Plot the misclassification error for the training data and
the test data at
http://www-stat.wharton.upenn.edu/~dmease/sonar_test.csv
as a function of the iterations. Run the algorithm for
500 iterations. Use default rpart() as the base learner.

Solution (continued):

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Iterations

E
rro

r R
at

e
Training Error
Test Error

